Serveur d'exploration Tocilizumab

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

pH‐selective mutagenesis of protein–protein interfaces: In silico design of therapeutic antibodies with prolonged half‐life

Identifieur interne : 002888 ( Main/Exploration ); précédent : 002887; suivant : 002889

pH‐selective mutagenesis of protein–protein interfaces: In silico design of therapeutic antibodies with prolonged half‐life

Auteurs : Velin Z. Spassov [États-Unis] ; Lisa Yan [États-Unis]

Source :

RBID : ISTEX:F35069162051402058E01877F9B59C7DF97FCD84

English descriptors

Abstract

Understanding the effects of mutation on pH‐dependent protein binding affinity is important in protein design, especially in the area of protein therapeutics. We propose a novel method for fast in silico mutagenesis of protein–protein complexes to calculate the effect of mutation as a function of pH. The free energy differences between the wild type and mutants are evaluated from a molecular mechanics model, combined with calculations of the equilibria of proton binding. The predicted pH‐dependent energy profiles demonstrate excellent agreement with experimentally measured pH‐dependency of the effect of mutations on the dissociation constants for the complex of turkey ovomucoid third domain (OMTKY3) and proteinase B. The virtual scanning mutagenesis identifies all hotspots responsible for pH‐dependent binding of immunoglobulin G (IgG) to neonatal Fc receptor (FcRn) and the results support the current understanding of the salvage mechanism of the antibody by FcRn based on pH‐selective binding. The method can be used to select mutations that change the pH‐dependent binding profiles of proteins and guide the time consuming and expensive protein engineering experiments. As an application of this method, we propose a computational strategy to search for mutations that can alter the pH‐dependent binding behavior of IgG to FcRn with the aim of improving the half‐life of therapeutic antibodies in the target organism. © Proteins 2013. © 2012 Wiley Periodicals, Inc.

Url:
DOI: 10.1002/prot.24230


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">pH‐selective mutagenesis of protein–protein interfaces: In silico design of therapeutic antibodies with prolonged half‐life</title>
<author>
<name sortKey="Spassov, Velin Z" sort="Spassov, Velin Z" uniqKey="Spassov V" first="Velin Z." last="Spassov">Velin Z. Spassov</name>
</author>
<author>
<name sortKey="Yan, Lisa" sort="Yan, Lisa" uniqKey="Yan L" first="Lisa" last="Yan">Lisa Yan</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:F35069162051402058E01877F9B59C7DF97FCD84</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1002/prot.24230</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-3S5BJ1LM-S/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001254</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001254</idno>
<idno type="wicri:Area/Istex/Curation">001254</idno>
<idno type="wicri:Area/Istex/Checkpoint">000379</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000379</idno>
<idno type="wicri:doubleKey">0887-3585:2013:Spassov V:ph:selective:mutagenesis</idno>
<idno type="wicri:Area/Main/Merge">002902</idno>
<idno type="wicri:Area/Main/Curation">002888</idno>
<idno type="wicri:Area/Main/Exploration">002888</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">pH‐selective mutagenesis of protein–protein interfaces: In silico design of therapeutic antibodies with prolonged half‐life</title>
<author>
<name sortKey="Spassov, Velin Z" sort="Spassov, Velin Z" uniqKey="Spassov V" first="Velin Z." last="Spassov">Velin Z. Spassov</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Accelrys, 10188 Telesis Court, Suite 100, San Diego</wicri:cityArea>
</affiliation>
<affiliation></affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Correspondence address: Accelrys, 10188 Telesis Court, Suite 100, San Diego</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Yan, Lisa" sort="Yan, Lisa" uniqKey="Yan L" first="Lisa" last="Yan">Lisa Yan</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Accelrys, 10188 Telesis Court, Suite 100, San Diego</wicri:cityArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Proteins: Structure, Function, and Bioinformatics</title>
<title level="j" type="alt">PROTEINS: STRUCTURE, FUNCTION, AND BIOINFORMATICS</title>
<idno type="ISSN">0887-3585</idno>
<idno type="eISSN">1097-0134</idno>
<imprint>
<biblScope unit="vol">81</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="704">704</biblScope>
<biblScope unit="page" to="714">714</biblScope>
<biblScope unit="page-count">11</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2013-04">2013-04</date>
</imprint>
<idno type="ISSN">0887-3585</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0887-3585</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Aevdw bmgel</term>
<term>Affinity</term>
<term>Alanine</term>
<term>Alanine scanning</term>
<term>Alanine scanning results</term>
<term>Backbone interactions</term>
<term>Binding</term>
<term>Binding affinity</term>
<term>Binding behavior</term>
<term>Binding energy</term>
<term>Binding interface</term>
<term>Binding partners</term>
<term>Binding profile</term>
<term>Binding profiles</term>
<term>Biol</term>
<term>Biol chem</term>
<term>Blue bars</term>
<term>Cancer cells</term>
<term>Charmm</term>
<term>Chem</term>
<term>Combinatorial problem</term>
<term>Comput chem</term>
<term>Computational</term>
<term>Computational protocol</term>
<term>Conformation</term>
<term>Conformational flexibility</term>
<term>Cumulative effect</term>
<term>Dielectric constants</term>
<term>Different solution</term>
<term>Discovery studio</term>
<term>Dmgmut</term>
<term>Electrostatic contribution</term>
<term>Electrostatic contributions</term>
<term>Electrostatic energy terms</term>
<term>Electrostatic interactions</term>
<term>Electrostatic term</term>
<term>Energy terms</term>
<term>Experimental data</term>
<term>Fcrn</term>
<term>Fractional protonation</term>
<term>Free energy</term>
<term>Free energy differences</term>
<term>Free energy terms</term>
<term>Full agreement</term>
<term>Good agreement</term>
<term>Histidine scanning</term>
<term>Homology</term>
<term>Homology model</term>
<term>Hotspot</term>
<term>Information table</term>
<term>Interface</term>
<term>Interface residues</term>
<term>Ionization</term>
<term>Ionization properties</term>
<term>Ligand binding</term>
<term>Lysosomal degradation</term>
<term>Mgel</term>
<term>Monoclonal antibodies</term>
<term>More mutations</term>
<term>Multiple protonation states</term>
<term>Murine</term>
<term>Murine fcrn</term>
<term>Mutagenesis</term>
<term>Mutant</term>
<term>Mutant structures</term>
<term>Mutation</term>
<term>Mutation energies</term>
<term>Mutation energy</term>
<term>Neonatal</term>
<term>Neonatal receptor</term>
<term>Neutral effect</term>
<term>Other hand</term>
<term>Other mutations</term>
<term>Phys chem</term>
<term>Possible states</term>
<term>Protein</term>
<term>Protein binding affinity</term>
<term>Protein complexes</term>
<term>Protein design</term>
<term>Protein engineering</term>
<term>Protein ionization</term>
<term>Protein stability</term>
<term>Protein therapeutics</term>
<term>Proton binding</term>
<term>Protonation</term>
<term>Protonation state</term>
<term>Receptor</term>
<term>Residue</term>
<term>Same approach</term>
<term>Scanning</term>
<term>Several types</term>
<term>Significant effect</term>
<term>Silico</term>
<term>Silico design</term>
<term>Silico predictions</term>
<term>Single mutations</term>
<term>Single protonation state</term>
<term>Spassov</term>
<term>Target antigen</term>
<term>Telesis court</term>
<term>Therapeutic antibodies</term>
<term>Titratable groups</term>
<term>Titratable residues</term>
<term>Titratible residues</term>
<term>Triple mutation</term>
<term>Turkey ovomucoid</term>
<term>Unbound</term>
<term>Unbound states</term>
<term>Wild type</term>
<term>Wiley periodicals</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Understanding the effects of mutation on pH‐dependent protein binding affinity is important in protein design, especially in the area of protein therapeutics. We propose a novel method for fast in silico mutagenesis of protein–protein complexes to calculate the effect of mutation as a function of pH. The free energy differences between the wild type and mutants are evaluated from a molecular mechanics model, combined with calculations of the equilibria of proton binding. The predicted pH‐dependent energy profiles demonstrate excellent agreement with experimentally measured pH‐dependency of the effect of mutations on the dissociation constants for the complex of turkey ovomucoid third domain (OMTKY3) and proteinase B. The virtual scanning mutagenesis identifies all hotspots responsible for pH‐dependent binding of immunoglobulin G (IgG) to neonatal Fc receptor (FcRn) and the results support the current understanding of the salvage mechanism of the antibody by FcRn based on pH‐selective binding. The method can be used to select mutations that change the pH‐dependent binding profiles of proteins and guide the time consuming and expensive protein engineering experiments. As an application of this method, we propose a computational strategy to search for mutations that can alter the pH‐dependent binding behavior of IgG to FcRn with the aim of improving the half‐life of therapeutic antibodies in the target organism. © Proteins 2013. © 2012 Wiley Periodicals, Inc.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Spassov, Velin Z" sort="Spassov, Velin Z" uniqKey="Spassov V" first="Velin Z." last="Spassov">Velin Z. Spassov</name>
</region>
<name sortKey="Spassov, Velin Z" sort="Spassov, Velin Z" uniqKey="Spassov V" first="Velin Z." last="Spassov">Velin Z. Spassov</name>
<name sortKey="Yan, Lisa" sort="Yan, Lisa" uniqKey="Yan L" first="Lisa" last="Yan">Lisa Yan</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/TocilizumabV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002888 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002888 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    TocilizumabV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:F35069162051402058E01877F9B59C7DF97FCD84
   |texte=   pH‐selective mutagenesis of protein–protein interfaces: In silico design of therapeutic antibodies with prolonged half‐life
}}

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Fri May 22 09:34:00 2020. Site generation: Sun Mar 28 09:01:19 2021